Wisdom is not the product of schooling but the lifelong attempt to acquire it. - Albert Einstein

Less Is More:
Human Computer Interaction and High-Functionality Applications

Gerhard Fischer, Hal Eden, and Holger Dick — Fall Semester 2010
gerhard@colorado.edu; haleden@colorado.edu; holger.dick@gmail.com;
September 13, 2010

Less Is More — Some Interesting Topics

- dimensions of change
- Bridging the Two Solitudes of the Physical and the Virtual
- Complexity, Skill and Human Limitations
- super-appliances and/versus Internet Appliances
- the Renaissance is Over – Long Live the Renaissance
Less Is More — Some Interesting Claims

- why and under which conditions is it true that “less is more”? — e.g.:
 - Pascal: “Sorry I did not have the time to make this letter shorter!”
 - scarce resource is human attention, not information!

- some claims:
 - “Systems will have to be tailored to dynamically connect the user with artifacts relevant to the user's current actions -- and do so in a way, form, place, and cost appropriate to the user.”
 - “Despite the increasing reliance on technology in our society, in my view, the key to designing a different future is to focus less on technology and engineering, and far more on the humanities and the design arts.”
 - “Given the much discussed constraints on human ability, how can we expect an individual to maintain the requisite specialist knowledge in their technological discipline, while at the same time have the needed competence in industrial design, sociology, anthropology, psychology, etc., which this essay implies are required to do one’s job?”
From a Techno-Centric Bias to a Human-Centric Perspective

- the importance of **usage and activity** rather than technology

- **questions** to be asked:
 - **Who** is using the computer?
 - **What** they are doing?
 - **Where** they are doing it?
 - **When** they are able to do it?
 - **Why** they are doing it?
 - **How** they do it?
Moore's Law: the growth of technology as a function of time

Moore's law: describes a long-term trend in the history of computing hardware. The number of transistors that can be placed inexpensively on an integrated circuit has doubled approximately every two years. The trend has continued for more than half a century and is not expected to stop until 2015 or later.[1]
Buxton's Law: Promised functionality and benefits of technology will increase directly with Moore's Law

there will be more functionality promised/offered tomorrow than there is today
A qualitative view of trends as observed in Microsoft Word

- Disk Space for Typical Installation
 - 100MB
 - 25MB
 - 6.2MB
 - 1100

- Suggested Application Memory
 - 50

- Menu Commands
 - 384KB
 - 37
 - 0.9MB

- Application Size (on disk)
 - 19MB

- Pages of Printed Documentation
 - 609
 - 1242

- Suggested Application Memory

God's Law: Humans' capacity is limited and does not increase over time

our neurons do not fire faster, our memory doesn't increase in capacity, and we do not learn or think faster as time progresses

the challenge for human-centered computing: symbiotic human-computer systems / distributed cognition
Examples and Rationale for High-Functionality Applications (HFA)

- **characteristics**
 - have a large number of features
 - people (in most cases) do only know a small subset of the existing features

- **examples:**
 - Microsoft-Word
 - Photoshop
 - Phones
 - IPhone / IPad Applications — more than 150,000
 - car radios

- **rationale:**
 - Why do they exist? → “Reality is not user-friendly”
 - Are they human-centered?
Problems with High-Functionality Applications (HFA)

- users do not know about the existence of tools

- users do not know how to access tools

- users do not know when to use tools (they lack “applicability conditions”)

- users cannot combine, adapt, and modify tools according to their specific needs
Problems with HFA: Microsoft’s View and Objectives

- some "routine" tasks could be and needed to be **automated** (→ Autocorrect)
- some tasks were **used too infrequently** by users to make it worthwhile for them to learn how to complete them and complex enough that users would need to relearn how to perform them each time they tried to accomplish the task (→ **use on demand**)
- complex tasks may include options that could benefit the users — **options that the user might never take advantage of**
- users have **different levels of expertise and backgrounds** and therefore require different levels of support
- tasks supported by software are **broad**
- users don't want to become technical experts, they just want to **get their tasks done**
- **help** is **insufficient**, spread out over the user interface, **hard to use**, and requires prior knowledge of computer software lingo
- users want tailored help delivered in a friendly and easy to understand manner (→ **personalization**)
Commercial Applications: Microsoft’s IntelliSense

- technology started to appear in Office 97

- claims: the software “understands”
 - the context of an end-user's actions
 - recognizes the user's intent
 - automatically produces the correct result
IntelliSense’s Features

- **routine task automation**
 - background spelling and grammar checks
 - automatic formatting of one paragraph based on format of the previous paragraph

- **tasks are simplified through the offering of wizards (e.g., wizards for creating faxes or letters)**

- **personalization of the software**
 - allowing users to control how the office assistant behaves
 - allowing developers to program additional features
 - allowing users to create additional features (e.g., macros)
How Our Research Addresses the Problems Created by HFAs

- **active help systems** — analyze the behavior of users and infer higher-level goals from low-level operations

- **specification components** — allow users to enrich the description of their tasks

- **critiquing components** — analyze and infer the task at hand; detect and identify the potential for a design information need; present contextualized knowledge for designers

- **increase user and task relevance** by integrating specification component and critiquing components; *generic critics* (defined at design time) → *specific critics* (information only known at use time)

- **create malleable systems** by integrating *adaptive and adaptable* components

- **support learning on demand**
Some Challenging Research Problems

- **identify user goals from low-level interactions**
 - active help systems
 - data detectors

- **integrate different modeling techniques**
 - domain-orientation
 - explicit and implicit
 - give a user specific problems to solve

- **capture the larger (often unarticulated) context and what users are doing**
 (especially beyond the direct interaction with the computer system)
 - embedded communication
 - ubiquitous computing

- **reduce information overload by making information relevant**
 - to the task at hand
 - to the assumed background knowledge of the users

- **support differential descriptions** (relate new information to information and concepts assumed to be known by the user)
Super-Appliances versus Domain-Oriented Tools
Rich Tools Sets
Rich Tools Sets
General Programming Languages

(defun factorial (n)
 (if (plusp n)
 (* n (factorial (1- n)))
 1))

public class Factorial {
 public static long factorial(long x) {
 if (x == 1) return 1;
 else return x * factorial(x-1);
 }
}
Binary Choices: Generic \leftrightarrow Overspecialized

- **Turing Tar Pit:** “Beware of the Turing Tar Pit, in which everything is possible, but nothing of interest is easy.”
 - current interactive programming environments are not sufficient for supporting domain workers → level of representation is still too far removed from the conceptual world of the domain workers
 - claim: they emphasize objective computability → the challenge: subjective computability

- **The Inverse of the Turing Tar Pit:** “Beware of the over-specialized systems, where operations are easy, but little of interest is possible.”
 - domain-specific tools (such as SimCity) provide extensive support for certain problem contexts
 - but: the ability to extend these environments is limited — even minor incremental changes are impossible in these systems
Domain-Oriented Design Environments: Exploring Middle Ground

Turing Tar Pit:
Saw + Wood

Inverse of the Turing Tar Pit:
Plastic Car

Construction Kits
Weak General System
Strong Specific System
Suite of Strong Specific Tool: Threshold of Frustration (Complexity Barrier)

- **claims:**
 - any functionality that lies above the Threshold of Frustration does not exist in human terms
 - the technological expertise of the computer scientists making these systems must be matched or exceeded by their knowledge of people and their capabilities
Reduce the Cognitive Load with Communicating Networked Tools

from “functioning independently” → “communicating”
(tools knowing about each other: location aware, functionally aware of each other)
What are the Tradeoffs?

- strengths and weaknesses of **Super-Appliances**
 - ..
 - ..

- strengths and weaknesses of **Domain-Oriented Tools**
 - ..
 - ..

- **global considerations / analogies**
 - in biological systems, there is a tendency for specialized organisms to win out over generalized ones
 - Buxton’s argument: “the evolution of technology will likely be no different”
 - rather than converging towards ever more complex multifunction tools → we must diverge towards a set of simpler more specialized tools
 - questions:
 - isn’t the Swiss Army knife a counter example?
 - will PDAs and phone become one device?
Educational Implications: How do we educate the “Renaissance Scholar” of the 21st Century?

- **claim**: the design principles that we can apply to the social engineering that addresses this issue are the same as those of the engineering of future information appliances.
 - weak-general vs strong-specific systems
 - discipline specialization vs general holistic knowledge

- given the **constraints on human ability** → how can we expect an individual to maintain the requisite specialist knowledge in their technological discipline, while at the same time have the needed competence in industrial design, sociology, anthropology, psychology, etc.,

- Renaissance man and woman have **not** been viable for the past 300-400 years → the world has simply become too complex

- the notion of **renaissance team** (= **reflective community**) is viable: a social network of specialists from different disciplines working as a team with a common language
Desired but **Unrealistic** — “Superhuman” (software and domain expert)
Realistic: Learning “something” about the Other Domain
Objective: Reflective Communities

Domain Knowledge

Tools/Media Knowledge

reflective community